Last Class:
Every permutation can be wutten as a product a 2 -cycles

$$
\begin{array}{ll}
\text { e.g. } & \left(a_{1} a_{2} \ldots a_{r}\right)=\left(a_{1} a_{2}\right)\left(a_{2} a_{3}\right) \ldots\left(a_{r-1} a_{r}\right) \\
C(234)=(12)(23)(34)
\end{array}
$$

Lots of different waxes how to write a permutation as a product ae 2-cycles

$$
\text { egg. } \quad \begin{aligned}
(123) & =(12)(23) \\
& =(23)(13)
\end{aligned}
$$

Lemma: Assume $\sum_{11}^{\sum_{i d}}=B_{1} \beta_{2} \ldots$ Bk \quad Bi's 2-cydes $^{\text {Lis }}$
$\Rightarrow K$ is even
proof by ind on k
$h=1 \quad \beta \neq$ id for any 2 -cycle $\beta=(a b)$ $\beta(a)=b \neq a$

$$
=\underline{\beta_{1} \beta_{2}=i d \Rightarrow \underbrace{\beta_{1}^{2} \beta_{2}=\beta_{1}}_{=2} \Rightarrow \beta_{1}=\beta_{2}, \quad \beta_{1} .}
$$

Assume $\quad i d=b_{1} \beta_{2} \ldots$ Ok
claim: If $\beta_{k y} \neq \beta_{k} \quad \beta_{a}=(a b)$
\Rightarrow can find 2 -cyde γ_{k} sit. $\quad \gamma_{k}(a)=a$

$$
\beta_{k-1} \beta_{k}=\beta_{k} \gamma_{k}
$$

proof have the following cases $\left[a_{1} b, c_{1} d\right.$ mutually distinct.]

$$
\begin{aligned}
(a c)(a b) & =(a b)(b c) \\
(b c)(a b) & =(a c)(b c) \\
(c d)(a b) & =(c d)(a b) \\
\uparrow \uparrow \uparrow & \uparrow \\
\beta_{k-1} \beta_{k} & \beta_{k} \delta_{k}
\end{aligned}
$$

claim 2 if id $=\beta_{1} \beta_{2} \ldots \beta_{u}$
then there is an $i<k$ sit. $\quad \beta_{c}=\beta u$
proof if not can use claim l repeatedly to transform

$$
\begin{aligned}
i d=\beta_{1} \ldots \beta_{k-1} \beta_{k} & =\beta_{1} \ldots \beta_{k-2} \beta_{k} \gamma_{k} & & \gamma_{n}(a)=a \\
& =\beta_{1} \ldots \beta_{k s} \beta_{k} \gamma_{k-1} \gamma_{k} & & \gamma_{n-1}(a)=a \\
& =\beta_{k} \gamma_{2} \gamma_{3} \ldots \gamma_{k} & & \gamma_{i}(a)=a
\end{aligned}
$$

BUT:

$$
\begin{aligned}
& \beta_{k} \gamma_{2} \ldots \gamma_{k}(a)=\beta_{k}(a)=b \neq a \\
& \varepsilon(a)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \exists i \text { s.t. } \beta_{i}=\beta_{u} \\
& \Rightarrow{ }_{i d}=\beta_{1} \ldots \beta_{n}=\beta_{1} \ldots \underbrace{\beta_{i} \beta_{k} \beta_{i+2} \ldots}_{=i d} \gamma_{k}=\underbrace{\beta_{1 \ldots} \ldots \beta_{i-1} 8_{i+2} \ldots \gamma_{k}}_{k-2 \text { Factor }}
\end{aligned}
$$

by ind ass. h-2 even

$$
\Rightarrow \quad k \text { even }
$$

Theorem Assume $\pi=\beta_{1} \ldots \beta_{s}$ and $\pi=\gamma_{1} \ldots \gamma_{r}$ all B_{i} 's and $\gamma_{i}^{\prime} 2$-cycles
\Rightarrow either boles r and are even or both r and are old.
Proc: $\begin{aligned} & \pi^{-1}=\gamma_{r} \gamma_{r-1} \ldots \gamma_{1} \Rightarrow i d=\pi \pi^{-1}=\underbrace{}_{r+s} \beta_{1} \beta_{2} \ldots \beta_{s} \gamma_{r} \gamma_{r-1} \ldots \gamma_{2} \gamma_{1} \\ & B_{y} \text { lemmaren } r+s \text { is even } \Rightarrow \text { dim. }\end{aligned}$
By lemma $r+s$ is even \Rightarrow dim.

Def A permutation π is called odd/ even if π is a product of an odd/even number of 2-cycles

Examples:
(12) odd
$(123)=(12)(23)$ even
$C(234)=(12)(23)(34)$ odd
(12)(34) even

Remark: Our theorem makes sure that the definition makes sense, ie. whether a permutation is odd or even does not depend on the choice of product of 2 -cycles.

Theorem \quad Let $A_{n}=\left\{\pi \in S_{n}, \pi\right.$ even $\}$
\Rightarrow An is a subgroup of S_{n} with $\frac{n!}{2}$ elements.
proof apply subgroup test
eg. if $\pi=\beta_{1} \beta 2 \ldots \beta r$
r even

$$
\Rightarrow \pi^{-1}=\underbrace{\beta r \beta r-1 \cdots \beta_{1}}_{\text {even of factors }}
$$

$\Rightarrow-1 \in A_{n}$
check for yourself. $\pi, \sigma \in A_{n} \Rightarrow \pi \sigma$$\Rightarrow A_{n}$
Olosere: π even $\Rightarrow(12) \pi$ is odd permutations by cancellation property, map $\pi \rightarrow$ (2) Π is injective \Rightarrow \# lode permutation \geq \# leven permatatimis
similarly: σ odd \Rightarrow (12) σ even

$$
\Rightarrow \text { \# Leven perm. } 3 \geq \text { \#odd perm }
$$

$\Rightarrow \#$ devon perm. $=\#$ hod pens. $=\frac{n!}{2}$
$|A n|$

Examples:
Az: (123), (132), id even permutation

$$
\left|A_{3}\right|=\frac{3!}{2}=\frac{6}{2}=3
$$

A4: we have 8 -cycles!

$$
\left.\begin{array}{ll}
\begin{array}{ll}
\text { we have } \\
(123) & (132) \\
(124) & (142) \\
(134) & (143) \\
(234) & (243)
\end{array} & (13)(24)
\end{array}\right\} 3
$$

midterms max point $25+1$ bonus point median 15
mean 15.55
$\min 9$
max 22
problem 4

$$
H=\left\{\binom{a b}{c d}, \quad \begin{array}{l}
a, b, c_{1} d \in \mathbb{R} \\
a \bmod 2=1=d \cdot \bmod 2 \\
c \bmod 2=0=b \bmod 2
\end{array}\right.
$$

(a) show $\operatorname{der}(x) \neq 0$ for $A \in H$
"
$a d-b c$
Calculate der mod 2

$$
a d-b c \bmod 2=1 \cdot 1-0.0=1
$$

$$
\Rightarrow a d-b c \neq 0
$$

(b) try subgrour losk

$$
A, A^{\prime} \in H \quad A^{\prime}=\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)
$$

$$
\begin{aligned}
A \cdot A^{\prime} & =\binom{a b}{c d}\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{ll}
a a^{\prime}+b c^{\prime} & a b^{\prime}+b d^{\prime} \\
c a^{\prime}+d c^{\prime} & c b^{\prime}+d d^{\prime}
\end{array}\right) \bmod 2 \\
& =\left(\begin{array}{ll}
1.1+0.0 & 1.0+0.1 \\
0.1+1.0 & 0.0+1.1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

\Rightarrow diag. enties a $A A^{\prime}$ are $\left.1 \bmod 2\right\} A^{\prime}$ elt. offdias" "AA' are $0 \bmod 2$

A inverse in general NOT in H

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

get fractions if $a d-b c \neq \alpha \pm B$
$\Rightarrow A^{-1}$ does not have integer entries in general!
\Rightarrow NOT a subgroup!
Full credit for part(b)
if you could show
If A, A^{\prime} in H, then also $A A^{\prime}$ in H
what I had intended was
Extra credit if you noticed that
H with additional couditin
the inverse of A may not be in H

$$
\operatorname{det}(x)=a d-b x=1
$$

with this condition H is a subgroup?

